DocumentCode :
417105
Title :
Parameter sharing and minimum classification error training of mixtures of factor analyzers for speaker identification
Author :
Yamamoto, Hiroyoshi ; Nankaku, Yoshihoko ; Miyajima, Chiyomi ; Tokuda, Keiichi ; Kitamura, Tadashi
Author_Institution :
Dept. of Comput. Sci. & Eng., Nagoya Inst. of Technol., Japan
Volume :
1
fYear :
2004
fDate :
17-21 May 2004
Abstract :
This paper investigates the parameter tying strategies of mixtures of factor analyzers (MFA) and discriminative training of MFA for speaker identification. The parameters of factor loading matrices or diagonal matrices are shared in different mixtures of MFA. The minimum classification error (MCE) training is applied to the MFA parameters to enhance the discrimination abilities. The results of text-independent speaker identification experiments show that MFA outperforms the conventional Gaussian mixture models (GMM) with diagonal or full covariance matrices and achieves the best performance when sharing the diagonal matrices, resulting in a relative gain of 26% over the GMM with diagonal covariance matrices. The recognition performance is further improved by the MCE training with an additional 3% error reduction.
Keywords :
covariance matrices; parameter estimation; probability; speaker recognition; MCE training; MFA; diagonal covariance matrices; diagonal matrices; discriminative training; factor loading matrices; minimum classification error training; mixtures of factor analyzers; parameter sharing; recognition performance; text-independent speaker identification; Computer errors; Computer science; Covariance matrix; Information analysis; Information science; Parameter estimation; Performance gain; Speaker recognition; Speech analysis; Training data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04). IEEE International Conference on
ISSN :
1520-6149
Print_ISBN :
0-7803-8484-9
Type :
conf
DOI :
10.1109/ICASSP.2004.1325914
Filename :
1325914
Link To Document :
بازگشت