• DocumentCode
    417145
  • Title

    Optimal blind separation of convolutive audio mixtures without temporal constraints

  • Author

    Kokkinakis, Kostas ; Nandi, Asoke K.

  • Author_Institution
    Dept. of Electr. Eng. & Electron., Liverpool Univ., UK
  • Volume
    1
  • fYear
    2004
  • fDate
    17-21 May 2004
  • Abstract
    This paper addresses the blind separation of convolutive and temporally correlated speech mixtures, through the use of a multichannel blind deconvolution (MBD) method. In the proposed method (NGA-LP) spatio-temporal separation is achieved by entropy maximization using the natural gradient algorithm (NGA), while a temporal prewhitening stage, based on linear prediction (LP), preserves the original spectral characteristics of each source contribution. It is further shown that a parameterized optimal nonlinearity derived from the generalized Gaussian density (GGD) model, increases the overall separation performance. Experiments with convolutive mixtures illustrate the merits of the proposed method.
  • Keywords
    Gaussian processes; acoustic convolution; blind source separation; deconvolution; entropy; filtering theory; gradient methods; prediction theory; speech processing; BSS; GGD; LP; MBD; NGA; blind signal separation; convolutive audio mixtures; entropy maximization principle; generalized Gaussian density model; linear prediction; multichannel blind deconvolution; natural gradient algorithm; optimal blind separation; spatio-temporal separation; speech separation techniques; temporal constraints; temporal prewhitening stage; temporally correlated speech mixtures; Acoustic sensors; Blind source separation; Deconvolution; Entropy; Finite impulse response filter; Frequency; Sensor phenomena and characterization; Signal processing; Signal processing algorithms; Speech processing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04). IEEE International Conference on
  • ISSN
    1520-6149
  • Print_ISBN
    0-7803-8484-9
  • Type

    conf

  • DOI
    10.1109/ICASSP.2004.1325961
  • Filename
    1325961