Title :
Improved name recognition with meta-data dependent name networks
Author :
Maskey, Sameer R. ; Bacchiani, Michiel ; Roark, Brian ; Sproat, Richard
Author_Institution :
Dept. of Comput. Sci., Columbia Univ., New York, NY, USA
Abstract :
A transcription system that requires accurate general name transcription is faced with the problem of covering the large number of names it may encounter, Without any prior knowledge, this requires a large increase in the size and complexity of the system due to the expansion of the lexicon. Furthermore, this increase will adversely affect the system performance due to the increased confusability. Here we propose a method that uses meta-data, available at runtime to ensure better name coverage without significantly increasing the system complexity. We tested this approach on a voicemail transcription task and assumed meta-data to be available in the form of a caller ID string (as it would show up on a caller ID enabled telephone) and the name of the mailbox owner. Networks representing possible spoken realization of those names are generated at runtime and included in the network of the decoder. The decoder network is built at training time using a class-dependent language model, with caller and mailbox name instances modeled as class tokens. The class tokens are replaced at test time with the name networks built from the meta-data. The proposed algorithm showed a reduction in the error rate of name tokens of 22.1%.
Keywords :
error statistics; meta data; speech recognition; voice mail; caller ID string; class tokens; class-dependent language model; decoder network; error rate reduction; mailbox owner; meta-data dependent name networks; name coverage; name recognition; possible spoken realization; telephone; transcription system; voicemail transcription task; Automatic speech recognition; Computer science; Decoding; Error analysis; Frequency estimation; Runtime; System performance; Testing; Vocabulary; Voice mail;
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04). IEEE International Conference on
Print_ISBN :
0-7803-8484-9
DOI :
10.1109/ICASSP.2004.1326104