Title :
A new signal model and identification algorithm for hidden semi-Markov signals
Author :
Azimi, Mehran ; Nasiopoulos, Panos ; Ward, Rabab K.
Author_Institution :
Dept. of Electr. & Comput. Eng., British Columbia Univ., Canada
Abstract :
Markovian models form a powerful tool for modelling physical signals. In this approach, a signal generation model is employed, and its parameters are estimated from signal samples. We present a novel signal generation model for hidden semi-Markov models, HSMMs. Our model results in a significantly easier and more efficient parameter identification method. Instead of the constant probabilities presently used for modelling state transitions, we use state transition probabilities that are state-duration dependant. We then develop a parameter identification algorithm based on the maximum likelihood criterion. Our numerical results show that our parameter identification algorithm can successfully, and more efficiently, estimate the actual values of the model parameters of an HSMM signal.
Keywords :
hidden Markov models; maximum likelihood estimation; probability; signal sampling; hidden semi-Markov models; maximum likelihood criterion; parameter estimation; parameter identification; signal generation model; signal model; signal samples; state transition probabilities; Context modeling; Hidden Markov models; Maximum likelihood estimation; Parameter estimation; Physics computing; Power engineering and energy; Power engineering computing; Signal generators; Signal processing; Speech processing;
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04). IEEE International Conference on
Print_ISBN :
0-7803-8484-9
DOI :
10.1109/ICASSP.2004.1326309