• DocumentCode
    417691
  • Title

    On compression using the distributed Karhunen-Loeve transform

  • Author

    Gastpar, Michael ; Dragotti, Pier Luigi ; Vetterli, Martin

  • Author_Institution
    Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA
  • Volume
    3
  • fYear
    2004
  • fDate
    17-21 May 2004
  • Abstract
    In this paper, we discuss a framework for the distributed compression of vector sources, based on our previous work on distributed transform coding (2002, 2003). In particular, our goal is to develop a strategy of first applying a suitable distributed Karhunen-Loeve transform, whereafter each component can be handled by standard distributed compression techniques. In the present paper, we first study the scenario where all but one terminal furnish a noisy approximation of their observation. For the case where the underlying vector is Gaussian, and the added noise is also Gaussian, we establish that indeed it is optimal for the last terminal to apply a (local) transform to its observations, and to separately compress each component in the transform domain. Then, we outline how this leads to a general simple distributed compression strategy for Gaussian vector sources: each terminal applies a suitable local transform to its observations, and encodes the resulting components separately in a Wyner-Ziv fashion, i.e., treating the compressed descriptions of all other terminals as side information available to the decoder. This achieves the best known performance. The optimum performance in unknown to date.
  • Keywords
    Gaussian noise; Karhunen-Loeve transforms; data compression; distributed processing; transform coding; vectors; Gaussian vector; Wyner-Ziv encoding; added Gaussian noise; distributed Karhunen-Loeve transform; distributed compression; distributed transform coding; noisy observation approximation; performance; vector sources; Bit rate; Decoding; Educational institutions; Gaussian noise; Karhunen-Loeve transforms; Random variables; Standards development; Transform coding;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04). IEEE International Conference on
  • ISSN
    1520-6149
  • Print_ISBN
    0-7803-8484-9
  • Type

    conf

  • DOI
    10.1109/ICASSP.2004.1326691
  • Filename
    1326691