• DocumentCode
    419617
  • Title

    Binarization of color images from an adaptation of possibilistic c-means algorithm

  • Author

    Tabbone, Salvatore ; Wendling, Laurent

  • Author_Institution
    LORIA-INRIA, Nancy II Univ., Vandoeuvre-les-Nancy, France
  • Volume
    1
  • fYear
    2004
  • fDate
    23-26 Aug. 2004
  • Firstpage
    704
  • Abstract
    A color image binarization is presented in this paper. The iterative possibilistic c-means algorithm is adapted by adding a fuzzy entropy criterion to split the membership function into two clusters (background and object). Such an improvement allows to perform a threshold free color binarization. Experimental results show the promising aspect of our approach.
  • Keywords
    fuzzy set theory; image colour analysis; image segmentation; iterative methods; pattern clustering; color image binarization; fuzzy entropy methods; fuzzy membership function; image segmentation; iterative algorithm; pattern clustering; possibilistic c-means algorithm; Character generation; Clustering algorithms; Color; Content based retrieval; Entropy; Image databases; Image retrieval; Image segmentation; Iterative algorithms; Pixel;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on
  • ISSN
    1051-4651
  • Print_ISBN
    0-7695-2128-2
  • Type

    conf

  • DOI
    10.1109/ICPR.2004.1334277
  • Filename
    1334277