Title :
Rapid spline-based kernel density estimation for Bayesian networks
Author :
Gurwicz, Yaniv ; Lerner, Boaz
Author_Institution :
Dept. of Electr. & Comput. Eng., Ben-Gurion Univ., Beer-Sheva, Israel
Abstract :
The likelihood for patterns of continuous attributes for the naive Bayesian classifier (NBC) may be approximated by kernel density estimation (KDE), letting every pattern influence the shape of the probability density thus leading to accurate estimation. KDE suffers from computational cost making it unpractical in many real-world applications. We smooth the density using a spline thus requiring only very few coefficients for the estimation rather than the whole training set, allowing rapid implementation of the NBC without sacrificing classifier accuracy. Experiments conducted over several real-world databases reveal acceleration, sometimes in several orders of magnitude, in favor of the spline approximation making the application of KDE to the NBC practical.
Keywords :
Bayes methods; approximation theory; belief networks; pattern classification; probability; splines (mathematics); Bayesian networks; naive Bayesian classifier; probability density; real world databases; spline approximation; spline based kernel density estimation; Bayesian methods; Computational efficiency; Kernel; Machine learning; Niobium compounds; Pattern analysis; Probability distribution; Shape; Spline; Testing;
Conference_Titel :
Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on
Print_ISBN :
0-7695-2128-2
DOI :
10.1109/ICPR.2004.1334625