DocumentCode :
419850
Title :
Missing microarray data estimation based on projection onto convex sets method
Author :
Gan, Xiangchao ; Liew, Alan Wee-chung ; Yan, Hong
Author_Institution :
Dept. of Comput. Eng. & Inf. Technol., City Univ. of Hong Kong, China
Volume :
3
fYear :
2004
fDate :
23-26 Aug. 2004
Firstpage :
782
Abstract :
DNA microarrays have gained widespread uses in biological studies. Missing values in a microarray experiment must be estimated before further analysis. In this paper, we propose a projection onto convex sets based algorithm to incorporate all a priori knowledge about missing values into the estimation process. Two convex sets applicable to all microarray datasets are constructed based on singular value decomposition (SVD). In addition, in the two most popular missing value estimation methods KNNimpute and SVDimpute, there is a trade-off whether to use a specific group of genes for the missing value estimation or to use all genes. Our algorithm can provide an optimal combination of these two strategies. Experiments show our algorithm can achieve a reduction of 16% to 20% error than the KNNimpute and SVDimpute methods.
Keywords :
DNA; estimation theory; pattern clustering; set theory; singular value decomposition; DNA microarrays; KNNimpute method; SVDimpute method; missing microarray data estimation; missing value estimation methods; singular value decomposition; Biology computing; Clustering algorithms; DNA computing; Equations; Gallium nitride; Gene expression; Image analysis; Information technology; Pattern recognition; Singular value decomposition;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on
ISSN :
1051-4651
Print_ISBN :
0-7695-2128-2
Type :
conf
DOI :
10.1109/ICPR.2004.1334645
Filename :
1334645
Link To Document :
بازگشت