DocumentCode :
423610
Title :
Support conformal vector machines with optimal Bayes point
Author :
Bayro-Corrochano, Eduardo
Author_Institution :
Dept. of Comput. Sci., CINVESTAV, Mexico
Volume :
1
fYear :
2004
fDate :
25-29 July 2004
Lastpage :
716
Abstract :
This work design support vector machines using the conformal Clifford geometric algebra framework. In this study we map the feature space into hyperspheres in order to get a uniformly distribution data. In this domain we apply as classifier a support conformal vector machines. In this context the optimal hyperplane found by the support conformal vector machine will approach to the optimal Bayes point. An experimental analysis clarifies our approach.
Keywords :
Bayes methods; geometry; support vector machines; vectors; conformal Clifford geometric algebra framework; hypersphere; optimal Bayes point; optimal hyperplane; support conformal vector machines; Algebra; Computer science; Equations; Kernel; Laboratories; Support vector machine classification; Support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on
ISSN :
1098-7576
Print_ISBN :
0-7803-8359-1
Type :
conf
DOI :
10.1109/IJCNN.2004.1380004
Filename :
1380004
Link To Document :
بازگشت