• DocumentCode
    424062
  • Title

    A double integrated neural network for identification of geometrical features dependency in lumped models

  • Author

    Luchetta, A. ; Manetti, S. ; Pellegrini, L.

  • Author_Institution
    Dept. of Electron. & Telecommun., Florence Univ., Italy
  • Volume
    4
  • fYear
    2004
  • fDate
    25-29 July 2004
  • Firstpage
    2895
  • Abstract
    A novel identification technique for lumped models of general electronic circuits (i.e. MOSFET, BJT, monolithic integrated circuits and filters) is presented. The approach is based on a neural network having a supplementary layer and an adapted learning process, whose convergence allows the validation of the device model. The supplementary layer is another neural network trained off-line on the model under exam. The inputs of the network are geometrical parameters and the neural network output represents the lumped circuit parameter estimation.
  • Keywords
    circuit CAD; learning (artificial intelligence); lumped parameter networks; neural net architecture; parameter estimation; adapted learning process; double integrated neural network; general electronic circuit; geometrical parameter; identification technique; lumped circuit parameter estimation; lumped model; Circuit simulation; Equivalent circuits; Frequency measurement; Heterojunction bipolar transistors; Intelligent networks; MOSFET circuits; Monolithic integrated circuits; Neural networks; Numerical simulation; Solid modeling;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on
  • ISSN
    1098-7576
  • Print_ISBN
    0-7803-8359-1
  • Type

    conf

  • DOI
    10.1109/IJCNN.2004.1381120
  • Filename
    1381120