• DocumentCode
    424409
  • Title

    Total Power Optimization through Simultaneously Multiple-VDD Multiple-VTH Assignment and Device Sizing with Stack Forcing

  • Author

    Hung, William ; Xie, Yingtao ; Vijaykrishnan, N. ; Kandemir, Mahmut ; Irwin, M.J. ; Tsai, Y.

  • Author_Institution
    The Pennsylvania State University
  • fYear
    2004
  • fDate
    11-11 Aug. 2004
  • Firstpage
    144
  • Lastpage
    149
  • Abstract
    In this paper, we present an algorithm for the minimization of total power consumption via multiple VDD assignment, multiple VTH assignment, device sizing and stack forcing, while maintaining performance requirements. These four power reduction techniques are properly encoded in genetic algorithm and evaluated simultaneously. The overhead imposed by the insertion of level converters is also taken into account. The effectiveness of each power reduction mechanism is verified, as are the combinations of different approaches. Experimental results are given for a number of 65 nm benchmark circuits that span typical circuit topologies, including inverter chains, SRAM decoders, multiplier and a 32bit carry adders. From the experimental results, we show that the combination of four low power techniques is the effective way to achieve low power budget.
  • Keywords
    Genetic Algorithm; Low Power; Genetic Algorithm; Low Power;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Low Power Electronics and Design, 2004. ISLPED '04. Proceedings of the 2004 International Symposium on
  • Conference_Location
    Newport Beach, CA, USA
  • Print_ISBN
    1-58113-929-2
  • Type

    conf

  • Filename
    1382978