DocumentCode :
424799
Title :
On uniform convergence in Markov jump linear systems problems and the Kolmogorov forward equation
Author :
Baczynski, Janusz ; Fragoso, Marcelo D.
Author_Institution :
Nat. Lab. for Sci. Comput., LNCC/CNPq, Rio de Janeiro, Brazil
Volume :
3
fYear :
2004
fDate :
June 30 2004-July 2 2004
Firstpage :
2540
Abstract :
Uniform convergence of standard transition matrices is a concept which appears in some fundamental results in Markov chain theory and therefore in optimal control, H/sub /spl infin// control and stability problems of continuous time Markov jump linear systems (MJLS) with infinite countable state space of the Markov chain. We identify some classes of standard transition matrices P = (p/sub ij/(t))/sub i,j//spl isin/N that exhibits j-uniform convergence of (o/sub ij/(t))/t = (p/sub ij/(t)-p/sub ij/(0)-p/spl dot//sub ij/(0)t)/t as t /spl rarr/ 0, using tools such as analysis of j-uniform convergence and a version in l/sub 1/ of the forward equation.
Keywords :
H/sup /spl infin// control; Markov processes; continuous time systems; linear systems; matrix algebra; optimisation; state-space methods; H/sub /spl infin// control; Kolmogorov forward equation; Markov chain theory; Markov jump linear systems; continuous time system; infinite countable state space; optimal control; standard transition matrices; uniform convergence;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2004. Proceedings of the 2004
Conference_Location :
Boston, MA, USA
ISSN :
0743-1619
Print_ISBN :
0-7803-8335-4
Type :
conf
Filename :
1383847
Link To Document :
بازگشت