• DocumentCode
    425170
  • Title

    A modified PCA based on the minimum error entropy

  • Author

    Guo, Zhenhua ; Yue, Hong ; Wang, Hong

  • Author_Institution
    Sch. of Mech. Sci. & Eng., Huazhong Univ. of Sci. & Technol., Hubei, China
  • Volume
    4
  • fYear
    2004
  • fDate
    June 30 2004-July 2 2004
  • Firstpage
    3800
  • Abstract
    Conventional principal component analysis (PCA) minimizes the total error variance, which may be inappropriate for the non-Gaussian distribution systems. In this paper the entropy is proposed as a more general index for PCA model, and then a modified PCA with the optimization for the minimum error entropy via a genetic algorithm (GA) is addressed.
  • Keywords
    genetic algorithms; least mean squares methods; minimum entropy methods; principal component analysis; GA optimization; genetic algorithm; minimum error entropy; modified PCA; nonGaussian distribution systems; principal component analysis; total error variance;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference, 2004. Proceedings of the 2004
  • Conference_Location
    Boston, MA, USA
  • ISSN
    0743-1619
  • Print_ISBN
    0-7803-8335-4
  • Type

    conf

  • Filename
    1384504