DocumentCode :
425367
Title :
A Probabilistic Approach to Image Orientation Detection via Confidence-Based Integration of Low-Level and Semantic Cues
Author :
Luo, Jiebo ; Boutell, Matthew
Author_Institution :
Eastman Kodak Company
fYear :
2004
fDate :
27-02 June 2004
Firstpage :
141
Lastpage :
141
Abstract :
Automatic image orientation detection for natural images is a useful, yet challenging research area. Humans use scene context and semantic object recognition to identify the correct image orientation. However, it is difficult for a computer to perform the task in the same way because current object recognition algorithms are extremely limited in their scope and robustness. As a result, existing orientation detection methods were built upon low-level vision features such as spatial distributions of color and texture. In addition, discrepant detection rates have been reported. We have developed a probabilistic approach to image orientation detection via confidence-based integration of low-level and semantic cues within a Bayesian framework. Our current accuracy is approaching 90% for unconstrained consumer photos, impressive given the findings of a psychophysical study conducted recently. The proposed framework is an attempt to bridge the gap between computer and human vision systems, and is applicable to other problems involving semantic scene content understanding.
Keywords :
Bayesian methods; Computer science; Humans; Image databases; Laboratories; Layout; Object recognition; Psychology; Research and development; Robustness;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition Workshop, 2004. CVPRW '04. Conference on
Type :
conf
DOI :
10.1109/CVPR.2004.11
Filename :
1384938
Link To Document :
بازگشت