DocumentCode :
425382
Title :
The Dense Estimation of Motion and Appearance in Layers
Author :
Yalcin, Hulya ; Black, Michael J. ; Fablet, Ronan
Author_Institution :
Brown University, Providence, RI
fYear :
2004
fDate :
27-02 June 2004
Firstpage :
165
Lastpage :
165
Abstract :
Segmenting image sequences into meaningful layers is fundamental to many applications such as surveillance, tracking, and video summarization. Background subtraction techniques are popular for their simplicity and, while they provide a dense (pixelwise) estimate of foreground/background, they typically ignore image motion which can provide a rich source of information about scene structure. Conversely, layered motion estimation techniques typically ignore the temporal persistence of image appearance and provide parametric (rather than dense) estimates of optical flow. Recent work adaptively combines motion and appearance estimation in a mixture model framework to achieve robust tracking. Here we extend mixture model approaches to cope with dense motion and appearance estimation. We develop a unified Bayesian framework to simultaneously estimate the appearance of multiple image layers and their corresponding dense flow fields from image sequences. Both the motion and appearance models adapt over time and the probabilistic formulation can be used to provideasegmentation of thescene into foreground/background regions. This extension of mixture models includes prior probability models for the spatial and temporal coherence of motion and appearance. Experimental results show that the simultaneous estimation of appearance models and flow fields in multiple layers improves the estimation of optical flow at motion boundaries.
Keywords :
Image converters; Image motion analysis; Image segmentation; Image sequences; Information resources; Layout; Motion estimation; Pixel; Subtraction techniques; Surveillance;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition Workshop, 2004. CVPRW '04. Conference on
Type :
conf
DOI :
10.1109/CVPR.2004.186
Filename :
1384964
Link To Document :
بازگشت