Title :
Online Feature Selection with Streaming Features
Author :
Xindong Wu ; Kui Yu ; Wei Ding ; Hao Wang ; Xingquan Zhu
Author_Institution :
Sch. of Comput. Sci. & Inf. Eng., Hefei Univ. of Technol., Hefei, China
Abstract :
We propose a new online feature selection framework for applications with streaming features where the knowledge of the full feature space is unknown in advance. We define streaming features as features that flow in one by one over time whereas the number of training examples remains fixed. This is in contrast with traditional online learning methods that only deal with sequentially added observations, with little attention being paid to streaming features. The critical challenges for Online Streaming Feature Selection (OSFS) include 1) the continuous growth of feature volumes over time, 2) a large feature space, possibly of unknown or infinite size, and 3) the unavailability of the entire feature set before learning starts. In the paper, we present a novel Online Streaming Feature Selection method to select strongly relevant and nonredundant features on the fly. An efficient Fast-OSFS algorithm is proposed to improve feature selection performance. The proposed algorithms are evaluated extensively on high-dimensional datasets and also with a real-world case study on impact crater detection. Experimental results demonstrate that the algorithms achieve better compactness and higher prediction accuracy than existing streaming feature selection algorithms.
Keywords :
astronomy computing; learning (artificial intelligence); meteorite craters; OSFS; fast-OSFS algorithm; feature selection performance; feature volumes; full feature space; high-dimensional datasets; impact crater detection; nonredundant features; online streaming feature selection framework; relevant features; streaming features; Accuracy; Algorithm design and analysis; Markov processes; Prediction algorithms; Redundancy; Training; Feature selection; streaming features; supervised learning;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
DOI :
10.1109/TPAMI.2012.197