Title : 
Stochastic Integration and Long Term Predictor Estimation under Noisy Conditions for Speech Enhancement
         
        
            Author : 
Kuropatwinski, M. ; Kleijn, W.B.
         
        
            Author_Institution : 
Signal, Sensors & Syst. Dept, R. Inst. of Technol., Stockholm, Sweden
         
        
        
        
            fDate : 
March 18-23, 2005
         
        
        
        
            Keywords : 
Kalman filters; Wiener filters; least mean squares methods; maximum likelihood estimation; prediction theory; signal sampling; speech enhancement; stochastic processes; Kalman filter; LTP parameters; Wiener filter; a priori STP parameter distribution; clean speech estimates; databases; dual frame stationary process; excitation variances; lag; likelihood criterion; long-term predictor estimation; minimum mean square error estimates; noisy conditions; short term predictor; single frame stationary process; speech enhancement; speech training data sampling; stochastic integration; tap pairs; triple frame asymptotic mean stationary process; Covariance matrix; Databases; Kalman filters; Noise measurement; Sensor systems; Software measurement; Speech coding; Speech enhancement; Stochastic processes; Training data;
         
        
        
        
            Conference_Titel : 
Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP '05). IEEE International Conference on
         
        
        
            Print_ISBN : 
0-7803-8874-7
         
        
        
            DOI : 
10.1109/ICASSP.2005.1415235