DocumentCode :
431380
Title :
Kernel Eigenspace-based MLLR Adaptation Using Multiple Regression Classes
Author :
Hsiao, Roger ; Mak, Brian
Author_Institution :
Dept. of Comput. Sci., Hong Kong Univ. of Sci. & Technol., China
Volume :
1
fYear :
2005
fDate :
March 18-23, 2005
Firstpage :
985
Lastpage :
988
Keywords :
adaptive signal processing; eigenvalues and eigenfunctions; maximum likelihood estimation; optimisation; principal component analysis; regression analysis; speech recognition; KEMLLR; KEV; KPCA; eigenmatrices; eigenvoice-based adaptation methods; kernel eigenspace-based MLLR adaptation; kernel eigenvoice adaptation; kernel principal component analysis; kernel-induced high dimensional feature space; multiple regression classes; quasi-Newton BFGS optimization algorithm; speaker-dependent HMM; speaker-dependent MLLR transformation matrices; Application software; Bayesian methods; Computer science; Hidden Markov models; Kernel; Loudspeakers; Maximum likelihood linear regression; Principal component analysis; Space technology; Speech;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP '05). IEEE International Conference on
ISSN :
1520-6149
Print_ISBN :
0-7803-8874-7
Type :
conf
DOI :
10.1109/ICASSP.2005.1415281
Filename :
1415281
Link To Document :
بازگشت