Title :
Minimax estimators dominating the least-squares estimator
Author :
Ben-Haim, Zvika ; Eldar, Yonina C.
Author_Institution :
Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel
Abstract :
We present several analytical and numerical results demonstrating the superiority of minimax estimators over least-squares (LS) estimation. We show that, for any bounded parameter set, a linear minimax estimator achieves lower mean-squared error than the LS estimator, over the entire parameter set. When a parameter set is unknown, we propose to estimate the parameter set from the data, and show that in many cases, the obtained blind minimax estimator still dominates the LS estimator. The results are related to and compared with other LS-dominating estimators, such as the James-Stein estimator.
Keywords :
least squares approximations; mean square error methods; minimax techniques; parameter estimation; James-Stein estimator; MSE; blind minimax estimator; bounded parameter set; least-squares estimator; linear minimax estimator; minimax MSE estimator; Covariance matrix; Estimation error; Gaussian noise; Minimax techniques; Parameter estimation; Performance analysis; Vectors;
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP '05). IEEE International Conference on
Print_ISBN :
0-7803-8874-7
DOI :
10.1109/ICASSP.2005.1415943