Title :
Equivalent conditions on generalized invariant subspaces for infinite-dimensional systems
Author_Institution :
Dept. of Inf. Sci., Tokyo Denki Univ., Saitama, Japan
Abstract :
In this paper, some generalized invariant subspaces for uncertain linear infinite-dimensional systems are studied. Especially, it is shown that each generalized invariant subspaces are equivalent to a finite-number of invariant conditions in the sense that uncertain parameters take special edges of given intervals.
Keywords :
linear systems; multidimensional systems; uncertain systems; generalized invariant subspaces; invariant condition; uncertain linear infinite dimensional system; uncertain parameter; Control systems; Extraterrestrial measurements; Hilbert space; Kernel; Linear feedback control systems; Linear systems; Output feedback; Robust control; State feedback;
Conference_Titel :
Control Conference, 2004. 5th Asian
Conference_Location :
Melbourne, Victoria, Australia
Print_ISBN :
0-7803-8873-9