DocumentCode :
433932
Title :
Robust state tracking of nonlinear systems on sliding surface using neural network
Author :
Karami-Moliaee, A. ; Gholipour-Khatir, H. ; Johari-Majd, V.
Author_Institution :
Dept. of Electr. Eng., Tarbiat Modarres Univ., Tehran, Iran
Volume :
2
fYear :
2004
fDate :
20-23 July 2004
Firstpage :
1313
Abstract :
In this paper, a new method for robust control of nonlinear systems using neural networks and SMC methodology is proposed. In this method, a radial basis function network is used as a controller whose parameters must be updated. A modified SMC methodology is used to adjust the parameter of controller such that a zero learning error level is reached in one-dimensional phase space defined on the system output. The performance of the proposed method is demonstrated via simulations.
Keywords :
neurocontrollers; nonlinear control systems; radial basis function networks; robust control; variable structure systems; neural network; nonlinear systems; radial basis function network; robust control; robust state tracking; sliding surface; zero learning error level; Control systems; Neural networks; Noise measurement; Nonlinear control systems; Nonlinear systems; Robust control; Robustness; Sliding mode control; Uncertainty; Variable structure systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference, 2004. 5th Asian
Conference_Location :
Melbourne, Victoria, Australia
Print_ISBN :
0-7803-8873-9
Type :
conf
Filename :
1426829
Link To Document :
بازگشت