DocumentCode :
434617
Title :
Computational modeling of the immune response to tumor antigens: implications for vaccination
Author :
Castiglione, Filippo ; Toschi, Federico ; Bernaschi, Massimo ; Succi, Sauro ; Benedetti, Roberta ; Falini, Brunangelo ; Liso, Arcangelo
Author_Institution :
Istituto Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, Rome, Italy
Volume :
1
fYear :
2004
fDate :
17-17 Dec. 2004
Firstpage :
569
Abstract :
Vaccination protocols designed to elicit anti-cancer immune responses have, in most cases, failed in producing tumor eradication and in prolonging patient survival. Usually in cancer vaccination, epitopes from one organism are included in the genome or linked with some protein of another (named carrier) in the hope that the immunogenic properties of the latter will boost an immune response to the former. However, recent results have demonstrated that injections of two different vectors encoding the same recombinant antigen generate high levels of specific immunity. Systematic comparison of the efficacy of different vaccination protocols has been hampered by technical limitations and a clear evidence that the use of multiple vectors has advantage over single carrier injections is lacking. We used a computational model to investigate the dynamics of the immune response to different anti-cancer vaccines based on randomly generated antigen/carrier compounds. More than 3000 simulations of the immune response to tumor were performed. Notably, the model has been extensively validated and it reproduces a relevant number of experimental observations. The model shows that when priming and boosting with the same construct, competition rather than cooperation develops amongst T cell clones of different specificities. Moreover, from the simulations, it appears that the sequential use of multiple carriers may generate more robust anti-tumor immune responses and may lead to effective tumor eradication in a higher percentage of cases. Our results provide a rational background for the design of novel strategies for the achievement of immune control of cancer.
Keywords :
cancer; drugs; medical computing; tumours; T cell clones; anticancer immune responses; cancer vaccination; computational model; computational modeling; immune response; immunogenic properties; tumor antigens; tumor eradication; vaccination protocols; Bioinformatics; Cancer; Computational modeling; Encoding; Genomics; Neoplasms; Organisms; Proteins; Protocols; Vaccines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2004. CDC. 43rd IEEE Conference on
Conference_Location :
Nassau
ISSN :
0191-2216
Print_ISBN :
0-7803-8682-5
Type :
conf
DOI :
10.1109/CDC.2004.1428691
Filename :
1428691
Link To Document :
بازگشت