• DocumentCode
    435314
  • Title

    Identification of nonlinear continuous-time Hammerstein model using the Fourier modulating function technique

  • Author

    Seo, IwYong ; Lee, Myeong-Soo ; Jin-Hyuk Hong ; Lee, Yong-Kwan ; Suh, J.S.

  • Author_Institution
    Korea Electr. Power Res. Inst., Daejeon, South Korea
  • Volume
    2
  • fYear
    2004
  • fDate
    2-6 Nov. 2004
  • Firstpage
    1588
  • Abstract
    Adaptive weighted least square (AWLS) using Fourier modulating function (FMF) method was applied for the identification of nonlinear continuous-time Hammerstein model. A simulation example is studied. In the example optimal selection of I/O data interval and maximum frequency index of Fourier modulating function have been investigated based on a RMS normalized error criterion. The illustrative simulation studies for the AWLS using FMF show the efficiency of the approach for the parameter identification of a continuous-time Hammerstein system in the presence of significant output measurement disturbances.
  • Keywords
    Fourier analysis; continuous time systems; least squares approximations; nonlinear systems; parameter estimation; Adaptive weighted least square; Fourier modulating function technique; I/O data interval; RMS normalized error criterion; nonlinear continuous-time Hammerstein model; parameter identification; Electronic mail; Equations; Frequency estimation; Gaussian noise; Least squares methods; Nonlinear dynamical systems; Nonlinear systems; Parameter estimation; Polynomials; Transfer functions;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Industrial Electronics Society, 2004. IECON 2004. 30th Annual Conference of IEEE
  • Print_ISBN
    0-7803-8730-9
  • Type

    conf

  • DOI
    10.1109/IECON.2004.1431818
  • Filename
    1431818