DocumentCode :
436309
Title :
Efficient nn-rasud search space reduction in a large vocabulary speech recognition system
Author :
Macias-Guarasa, J. ; Ferreiros, J. ; Montero, J.M. ; Cordoba, R. ; Olbes, A.
Volume :
17
fYear :
2004
fDate :
June 28 2004-July 1 2004
Firstpage :
155
Lastpage :
160
Abstract :
In very large vocabulary speech recognition systems using the hypothesis-veriiicali~)np aradigm, the vcrification stage is usually the most time consumiilg. State ofihi. art systems combine fixed six hypothesized search spaces with odvanccd pmninp techniques. In this paper we propose R novel strategy to dynamically calculate thc hypotliesired search spacc, rising neural neiamorks as the estimation module and designing the inpui feature set wiih a cnrcfiil gredy-based selectioii approach. The main achievement lias been a statistically signilicaiit rclniivc dccrrase in error rate of 33.53%, while gelling a relative decrease in average computational demands of up to 14.40%.
Keywords :
Art; Computer networks; Costs; Decoding; Degradation; Error analysis; Production systems; Real time systems; Speech recognition; Vocabulary;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Automation Congress, 2004. Proceedings. World
Conference_Location :
Seville
Print_ISBN :
1-889335-21-5
Type :
conf
Filename :
1439361
Link To Document :
بازگشت