DocumentCode :
436361
Title :
Gripper tracking with trajectory prediction and adaptive fuzzy control
Author :
Perez, C. ; Reinoso, Oscar ; Garcia, Narciso ; Neco, R. ; Vicente, M.A.
Author_Institution :
Departamento de Ingenieria de Sistemas Industriales, Universidad Miguel Hernandez, Avda. de la Universidad S/N 03202 Elche, Spain
Volume :
17
fYear :
2004
fDate :
June 28 2004-July 1 2004
Firstpage :
513
Lastpage :
518
Abstract :
This paper presents a new and robust algorithm to track a robot gripper during its movement in a teleoperation task. Based on acquired image and knowing the gripper model, the pose is obtained. This information is used to move a pan-tilt camera and keep the gripper centered in the image using an adaptive fuzzy logic controller. This control law is used combined with a position prediction technique (Extended Kalman Filter - EKF) Vision based systems have a lot of empirically adjustable parameters for a good working. With the algorithm proposed in this paper, the adjustable parameters are minimized, so the system robustness is increased.
Keywords :
Adaptive control; Calibration; Cameras; Fuzzy control; Grippers; Machine vision; Programmable control; Robot vision systems; Robustness; Trajectory; applications; computer vision; fuzzy control; tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Automation Congress, 2004. Proceedings. World
Conference_Location :
Seville
Print_ISBN :
1-889335-21-5
Type :
conf
Filename :
1439418
Link To Document :
بازگشت