DocumentCode :
436967
Title :
Parameter estimation of chirp signals using the metropolis-adjusted-Langevin´s algorithm
Author :
Yan, Lin ; Xiutan, Wang ; Yingning, Peng
Author_Institution :
Dept. of Electron. Eng., Tsinghua Univ., Beijing, China
Volume :
1
fYear :
2004
fDate :
31 Aug.-4 Sept. 2004
Firstpage :
160
Abstract :
This paper addresses the problem of parameter estimation of chirp signals in additive Gaussian white noise. A new Markov chain Monte Carlo (MCMC) method called the metropolis-adjusted-Langevin´s (MAL) algorithm is employed to solve this problem, which is faster to converge than the random walk metropolis-hastings (MH) algorithm. The initial values for the method are obtained by the discrete polynomial-phase transform (DFT). Simulations show that the Cramer-Rao low bound (CRLB) can be attained by the proposed method even at low signal-to-noise ratio (SNR) and the MAL algorithm is more efficient than the random walk MH algorithm.
Keywords :
AWGN; Markov processes; Monte Carlo methods; discrete transforms; parameter estimation; polynomials; signal processing; Markov chain Monte Carlo method; additive Gaussian white noise; chirp signal; discrete polynomial-phase transform; metropolis-adjusted-Langevin algorithm; parameter estimation; Chirp; Discrete transforms; Gaussian noise; Maximum likelihood estimation; Parameter estimation; Radar imaging; Signal analysis; Signal processing; Sonar; White noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing, 2004. Proceedings. ICSP '04. 2004 7th International Conference on
Print_ISBN :
0-7803-8406-7
Type :
conf
DOI :
10.1109/ICOSP.2004.1452606
Filename :
1452606
Link To Document :
بازگشت