DocumentCode
437501
Title
Int-EM-CEM algorithm for imprecise data. Comparison with the CEM algorithm using Monte Carlo simulations
Author
Hamdan, Hani ; Govaert, Girard
Author_Institution
Univ. de Technol. de Compiegne, France
Volume
1
fYear
2004
fDate
1-3 Dec. 2004
Firstpage
410
Abstract
This paper addresses the problem of fitting mixture model based-clustering to imprecise data using the CEM algorithm. Imprecise data are modelled by multivariate uncertainty zones, which constitute a generalization of multivariate interval-valued data. To estimate simultaneously the mixture model parameters and the partition from uncertainty zone data, we propose an adapted version of the CEM algorithm. Results on simulated data compare the proposed algorithm with the classical one (applied to the raw data then to the uncertain data).
Keywords
Gaussian processes; Monte Carlo methods; data mining; generalisation (artificial intelligence); pattern classification; uncertainty handling; Gaussian processes; Int-EM-CEM algorithm; Monte Carlo simulation; data mining; multivariate uncertainty zone; pattern classification; Acoustic emission; Clustering algorithms; Displays; Heuristic algorithms; Iterative algorithms; Parameter estimation; Partitioning algorithms; Pressure control; Prototypes; Uncertainty;
fLanguage
English
Publisher
ieee
Conference_Titel
Cybernetics and Intelligent Systems, 2004 IEEE Conference on
Print_ISBN
0-7803-8643-4
Type
conf
DOI
10.1109/ICCIS.2004.1460450
Filename
1460450
Link To Document