• DocumentCode
    437501
  • Title

    Int-EM-CEM algorithm for imprecise data. Comparison with the CEM algorithm using Monte Carlo simulations

  • Author

    Hamdan, Hani ; Govaert, Girard

  • Author_Institution
    Univ. de Technol. de Compiegne, France
  • Volume
    1
  • fYear
    2004
  • fDate
    1-3 Dec. 2004
  • Firstpage
    410
  • Abstract
    This paper addresses the problem of fitting mixture model based-clustering to imprecise data using the CEM algorithm. Imprecise data are modelled by multivariate uncertainty zones, which constitute a generalization of multivariate interval-valued data. To estimate simultaneously the mixture model parameters and the partition from uncertainty zone data, we propose an adapted version of the CEM algorithm. Results on simulated data compare the proposed algorithm with the classical one (applied to the raw data then to the uncertain data).
  • Keywords
    Gaussian processes; Monte Carlo methods; data mining; generalisation (artificial intelligence); pattern classification; uncertainty handling; Gaussian processes; Int-EM-CEM algorithm; Monte Carlo simulation; data mining; multivariate uncertainty zone; pattern classification; Acoustic emission; Clustering algorithms; Displays; Heuristic algorithms; Iterative algorithms; Parameter estimation; Partitioning algorithms; Pressure control; Prototypes; Uncertainty;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Cybernetics and Intelligent Systems, 2004 IEEE Conference on
  • Print_ISBN
    0-7803-8643-4
  • Type

    conf

  • DOI
    10.1109/ICCIS.2004.1460450
  • Filename
    1460450