DocumentCode :
441855
Title :
Incremental algorithm for detecting community structure in dynamic networks
Author :
Yang, Bo ; Liu, Da-you
Author_Institution :
Coll. of Comput. Sci. & Technol., Jilin Univ., Changchun, China
Volume :
4
fYear :
2005
fDate :
18-21 Aug. 2005
Firstpage :
2284
Abstract :
Community structure is an important property of networks. Being able to identify communities can provide invaluable help in exploiting and understanding both social and non-social networks. Several algorithms have been developed up till now. However all these algorithms can work well only with small or moderate networks with vertexes of order 10 4. Additionally, all existing algorithms are off-line and can not work well with highly dynamic networks such as Web, in which Web pages are updated frequently every day. When the already clustered network is updated, the entire network including original and incremental parts has to be recalculated, even only slight changes involved. To address this problem we develop an incremental algorithm which allows for detecting community structure in large-scale and dynamic networks. Based on the community structure it detect previously our algorithm takes little time to reclassify the entire network including both original and incremental parts. Furthermore, our algorithm is faster than most existing algorithms such as Girvan and Newman´s algorithm and its improved versions. Also our algorithm can help to visualize these community structures in network and provide a new approach to research the evolving process of dynamic networks.
Keywords :
Internet; computational complexity; social sciences computing; Web page; clustered network; community structure; dynamic network; incremental algorithm; large-scale network; social network; Biochemistry; Clustering algorithms; Computer networks; Educational institutions; Intelligent networks; Machine learning algorithms; Partitioning algorithms; Social network services; Visualization; Web sites; Community; Incremental algorithm; Social network;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on
Conference_Location :
Guangzhou, China
Print_ISBN :
0-7803-9091-1
Type :
conf
DOI :
10.1109/ICMLC.2005.1527325
Filename :
1527325
Link To Document :
بازگشت