DocumentCode :
441868
Title :
Application of LSA space´s dimension character in document multi-hierarchy clustering
Author :
Liu, Yun-Feng ; Qi, Huan ; Hu, Xiang-En ; Cai, Zhi-Qiang ; Dai, Jian-Min ; Zhu, Li
Author_Institution :
Inst. of Syst. Eng., Huazhong Univ. of Sci. & Technol., Hubei, China
Volume :
4
fYear :
2005
fDate :
18-21 Aug. 2005
Firstpage :
2384
Abstract :
In LSA space, dimensions corresponding to bigger singular values reflect the general concept of language elements, while dimensions corresponding to smaller singular values reflect particular concept of language elements. On this basis, different dimensions of LSA space are adopted for document clustering under various concept granularities. In addition, in the LSA-based algorithm of document clustering, better clustering results are obtained by taking the row vectors of document self-indexing matrix as the objects to be clustered, instead of the document vectors with low dimensionality.
Keywords :
data mining; document handling; indexing; pattern clustering; LSA space dimension character; document multihierarchy clustering; document self-indexing matrix; document vectors; language elements; latent semantic analysis; Clustering algorithms; Computer aided instruction; Frequency; Intelligent systems; Matrix decomposition; Natural languages; Singular value decomposition; Space technology; Systems engineering and theory; Text analysis; Concept Granularity; Document Multi-hierarchy Clustering; Document Self-indexing Matrix; Latent Semantic Analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on
Conference_Location :
Guangzhou, China
Print_ISBN :
0-7803-9091-1
Type :
conf
DOI :
10.1109/ICMLC.2005.1527343
Filename :
1527343
Link To Document :
بازگشت