DocumentCode :
442207
Title :
Determining long memory processes parameters based on multi-scale maximum likelihood estimation
Author :
Wen, Cheng-lin ; Wang, Song-wei
Author_Institution :
Sch. of Comput. & Inf. Eng., Henan Univ., Kaifeng, China
Volume :
8
fYear :
2005
fDate :
18-21 Aug. 2005
Firstpage :
5188
Abstract :
In practical, there exists a problem in traditional maximum likelihood estimation (TMLE) that is the great computational burden. Based on the decorrelation property of discrete wavelet transform (DWT), we propose and evaluate multi-scale maximum likelihoods estimation (MMLE), and apply it to a kind of long memory processes with broad application background. Simulation results show that under some precision demands, MMLE reduced the computational complexity greatly and can be used as an alternative of parameter estimation method.
Keywords :
decorrelation; discrete wavelet transforms; maximum likelihood estimation; computational complexity; decorrelation property; discrete wavelet transform; long memory process; multiscale maximum likelihood estimation; Decorrelation; Discrete Wavelet Transform; Long Memory Processes; Multi-Scale Maximum Likelihood Estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on
Conference_Location :
Guangzhou, China
Print_ISBN :
0-7803-9091-1
Type :
conf
DOI :
10.1109/ICMLC.2005.1527859
Filename :
1527859
Link To Document :
بازگشت