DocumentCode :
442762
Title :
Variational segmentation of color images
Author :
Nasios, Nikolaos ; Bors, Adrian G.
Author_Institution :
Dept. of Comput. Sci., York Univ., UK
Volume :
2
fYear :
2005
fDate :
11-14 Sept. 2005
Abstract :
A variational Bayesian framework is employed in the paper for image segmentation using color clustering. A Gaussian mixture model is used to represent color distributions. Variational expectation-maximization (VEM) algorithm takes into account the uncertainty in the parameter estimation ensuring a lower bound on the approximation error. In the variational Bayesian approach we integrate over distributions of parameters. The processing task in this case consists of estimating the hyperparameters of these distributions. We propose a maximum log-likelihood initialization approach for the variational expectation-maximization (VEM) algorithm. The proposed algorithm is applied to image segmentation using color clustering when representing the images in the L*u*v color coordinate system.
Keywords :
Gaussian distribution; belief networks; expectation-maximisation algorithm; image colour analysis; image segmentation; Gaussian mixture model; color clustering; color coordinate system; hyperparameters estimation; maximum log-likelihood initialization approach; variational Bayesian framework; variational expectation-maximization algorithm; variational segmentation; Approximation algorithms; Bayesian methods; Clustering algorithms; Color; Covariance matrix; Image segmentation; Maximum likelihood estimation; Parameter estimation; Probability density function; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2005. ICIP 2005. IEEE International Conference on
Print_ISBN :
0-7803-9134-9
Type :
conf
DOI :
10.1109/ICIP.2005.1530130
Filename :
1530130
Link To Document :
بازگشت