DocumentCode :
442766
Title :
Unsupervised multiband image segmentation using hidden Markov quadtree and copulas
Author :
Flitti, Farid ; Collet, Christophe ; Joannic-Chardin, Annabelle
Author_Institution :
Strasbourg Univ., France
Volume :
2
fYear :
2005
fDate :
11-14 Sept. 2005
Abstract :
This paper deals with hidden Markov quadtree model for multiband image segmentation. This task, requiring multivariate probability density computations for the data likelihood term, is often confronted with the lack of analytical multidimensional expressions in the non-gaussian case. Thus, multidimensional Gaussian distribution is usually used for its simplicity, even if Gaussian assumption is not always verified. In this work, we propose a new approach based on copula theory to compute multivariate density on Markov quadtree.
Keywords :
Gaussian distribution; hidden Markov models; image segmentation; quadtrees; analytical multidimensional expressions; copula theory; data likelihood; hidden Markov quadtree; multidimensional Gaussian distribution; multivariate probability density computations; unsupervised multiband image segmentation; Bayesian methods; Biomedical imaging; Gaussian distribution; Hidden Markov models; Image segmentation; Independent component analysis; Multidimensional systems; Remote sensing; Robustness; Strontium;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2005. ICIP 2005. IEEE International Conference on
Print_ISBN :
0-7803-9134-9
Type :
conf
DOI :
10.1109/ICIP.2005.1530135
Filename :
1530135
Link To Document :
بازگشت