• DocumentCode
    44305
  • Title

    Minimizing Nearest Neighbor Classification Error for Nonparametric Dimension Reduction

  • Author

    Wei Bian ; Tianyi Zhou ; Martinez, Ana Milena ; Baciu, George ; Dacheng Tao

  • Author_Institution
    Centre of Quantum Comput. & Intell. Syst., Univ. of Technol., Sydney, NSW, Australia
  • Volume
    25
  • Issue
    8
  • fYear
    2014
  • fDate
    Aug. 2014
  • Firstpage
    1588
  • Lastpage
    1594
  • Abstract
    In this brief, we show that minimizing nearest neighbor classification error (MNNE) is a favorable criterion for supervised linear dimension reduction (SLDR). We prove that MNNE is better than maximizing mutual information in the sense of being a proxy of the Bayes optimal criterion. Based on kernel density estimation, we derive a nonparametric algorithm for MNNE. Experiments on benchmark data sets show the superiority of MNNE over existing nonparametric SLDR methods.
  • Keywords
    Bayes methods; minimisation; nonparametric statistics; pattern classification; Bayes optimal criterion; MNNE; SLDR; benchmark datasets; kernel density estimation; minimizing nearest neighbor classification error; nonparametric dimension reduction algorithm; supervised linear dimension reduction; Artificial neural networks; Bandwidth; Entropy; Kernel; Manifolds; Mutual information; Training; Bayes optimal criterion; nearest neighbor classification error (NN error); nonparametric methods; supervised linear-dimension reduction (SLDR); supervised linear-dimension reduction (SLDR).;
  • fLanguage
    English
  • Journal_Title
    Neural Networks and Learning Systems, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    2162-237X
  • Type

    jour

  • DOI
    10.1109/TNNLS.2013.2294547
  • Filename
    6698335