DocumentCode :
444691
Title :
On the eigen-decomposition of electromagnetic systems and the frequency dependence of the associated eigenvalues
Author :
Fischer, Brian E. ; Yagle, Andrew E. ; Volakis, John L.
Author_Institution :
Michigan Univ., Ann Arbor, MI
Volume :
1B
fYear :
2005
fDate :
2005
Firstpage :
121
Abstract :
The asymptotic waveform evaluation (AWE) technique is a useful way to minimize repeated electromagnetic system computations for multiple frequencies, dramatically reducing wideband solution times. In the context of AWE, it has already been shown (Y.E. Erdemli et al., 1999) (J. Gong and J.L. Volakis, 1996) that use of the Fade rational function for the modeling of unknowns is a superior choice to the Taylor series expansion, providing a wider bandwidth coverage; owing to its enhanced ability to model pole behavior. This paper discusses a close analog to the Fade rational function developed from the eigenvalues of a given electromagnetic system. For Illustrative purposes, we chose the finite element boundary integral (FE-BI) method to demonstrate the application and utility of AWE expansions based on the eigenvalues of the FE-BI matrix system
Keywords :
boundary integral equations; computational electromagnetics; eigenvalues and eigenfunctions; finite element analysis; matrix algebra; rational functions; Fade rational function; associated eigenvalues; asymptotic waveform evaluation; eigen-decomposition; electromagnetic systems; finite element boundary integral; matrix system; Bandwidth; Context modeling; Eigenvalues and eigenfunctions; Electromagnetic radiation; Electromagnetic scattering; Finite element methods; Frequency dependence; Integral equations; Laboratories; Taylor series;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Antennas and Propagation Society International Symposium, 2005 IEEE
Conference_Location :
Washington, DC
Print_ISBN :
0-7803-8883-6
Type :
conf
DOI :
10.1109/APS.2005.1551499
Filename :
1551499
Link To Document :
بازگشت