DocumentCode :
445892
Title :
On-line system identification using context discernment
Author :
Holmstrom, Lars ; Santiago, Roberto ; Lendaris, George G.
Author_Institution :
NW Comput. Intelligence Laboratory, Portland State Univ., OR, USA
Volume :
2
fYear :
2005
fDate :
31 July-4 Aug. 2005
Firstpage :
792
Abstract :
Mathematical models are often used in system identification applications. The dynamics of most systems, however, change over time and the sources of these changes cannot always be directly determined or measured. To maintain model accuracy, it is desirable to design system identifiers that can adapt to these dynamical shifts. We use reinforcement learning to train an agent to recognize dynamical changes in a modeled system and to estimate new parameter values for the model. The subsequent actions of this agent are characterized as "moving" the parameterized model on an optimal trajectory in model parameter space. It is found that this method is capable of quickly and accurately discerning the correct parameter values.
Keywords :
learning (artificial intelligence); parameter estimation; parameter space methods; context discernment; dynamical shifts; model parameter space; online system identification; reinforcement learning; Application software; Computational intelligence; Friction; Laboratories; Maintenance engineering; Mathematical model; Parameter estimation; Predictive models; System identification; Time measurement;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2005. IJCNN '05. Proceedings. 2005 IEEE International Joint Conference on
Print_ISBN :
0-7803-9048-2
Type :
conf
DOI :
10.1109/IJCNN.2005.1555953
Filename :
1555953
Link To Document :
بازگشت