DocumentCode :
451020
Title :
Pairwise classifier combination in the transferable belief model
Author :
Quost, Benjamin ; Denaeux, T. ; Masson, Mylène
Author_Institution :
Univ. de Technol., Compiegne, France
Volume :
1
fYear :
2005
fDate :
25-28 July 2005
Abstract :
Classifier combination constitutes an interesting approach when solving multi-class classification problems. We propose to carry out this combination in the belief functions framework. Our approach, similar to a method proposed by Hastie and Tibshirani in a probabilistic framework, is first presented. The performances obtained on various datasets are then analyzed, showing a gain of classification accuracy using the belief functions approach.
Keywords :
belief networks; pattern classification; probabilistic logic; multiclass classification problem; pairwise classifier combination; probabilistic framework; transferable belief model; Chemical technology; Costs; Data analysis; Pattern recognition; Performance analysis; Performance gain; Robustness; Testing; Training data; Uncertainty; Belief functions; Classification; Dempster-Shafer theory; Pattern Recognition; Transferable Belief Model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Fusion, 2005 8th International Conference on
Print_ISBN :
0-7803-9286-8
Type :
conf
DOI :
10.1109/ICIF.2005.1591888
Filename :
1591888
Link To Document :
بازگشت