DocumentCode :
451237
Title :
Optimizing Reduction Computations In a Distributed Environment
Author :
Kurc, T. ; Feng Lee ; Agrawal, G. ; Catalyurek, U. ; Ferreira, R. ; Saltz, J.
Author_Institution :
Ohio State University, Columbus
fYear :
2003
fDate :
15-21 Nov. 2003
Firstpage :
9
Lastpage :
9
Abstract :
We investigate runtime strategies for data-intensive applications that invovle generalized reductions on large, distributed datasets. Our set of strategies includes replicated filter state, partitioned filter state, and hybrid options between these two extremes. We evaluate these strategies using emulators of three real applications, different query and output sizes, and a number of configurations. We consider execution in a homogeneous cluster and in a distributed environment where only a subset of nodes hst the data. Our results show replicating the filter state scales well and outperforms other schemes, if sufficient memory is available and sufficient computation is involved to offset the cost of global merge step. In other cases, hybrid is usually the best. Moreover, in almost all cases, the performance of the hybrid strategy is quite close to the best strategy. Thus, we believe that hybrid is an attractive approach when the relative performance of different schemes cannot be predicted.
Keywords :
Application software; Biomedical computing; Biomedical informatics; Costs; Data analysis; Distributed computing; Filters; Permission; Runtime environment; Subcontracting;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Supercomputing, 2003 ACM/IEEE Conference
Conference_Location :
Phoenix, AZ, USA
Print_ISBN :
1-58113-695-1
Type :
conf
DOI :
10.1109/SC.2003.10029
Filename :
1592912
Link To Document :
بازگشت