Title :
Optimisation of the Maximum Likelihood Method Using Bias Minimisation
Author :
Rahman, M. Ziaur ; Dooley, Laurence S. ; Karmakar, Gour C.
Author_Institution :
Gippsland Sch. of Inf. Technol., Monash Univ., Clayton, Vic.
Abstract :
Maximum likelihood (ML) is a popular and widely used statistical method, and while it is effective, its major short-comings are that it is a biased and non robust estimator. This paper proposes a formal establishment of an optimisation of ML (OML) by approximating the true distribution minimising the bias, and exploiting the underlying relationship between ML and the maximum entropy method. OML exposes the inefficiency of the classical ML in the orthogonal least square error minimisation sense, for a number of finite sample datasets. The robustness of the proposed OML method in finding an estimate within the boundaries of the parameter space is also proven. Under the same conditions, OML consistently provides a more global and efficient estimation, so both theoretically and empirically establishing its superiority over ML in terms of efficiency and robustness
Keywords :
least squares approximations; maximum entropy methods; maximum likelihood estimation; minimisation; signal processing; bias minimisation; maximum entropy method; maximum likelihood method; orthogonal least square error minimisation sense; statistical method; Digital signal processing; Entropy; Estimation theory; Frequency estimation; Least squares approximation; Maximum likelihood detection; Maximum likelihood estimation; Minimization methods; Optimization methods; Robustness;
Conference_Titel :
Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on
Conference_Location :
Toulouse
Print_ISBN :
1-4244-0469-X
DOI :
10.1109/ICASSP.2006.1660667