DocumentCode :
45595
Title :
Reduction of space complexity based on symmetric TMVP
Author :
Chunsheng Yang ; Jeng-Shyang Pan ; Chiou-Yng Lee ; Lijun Yan
Author_Institution :
Shenzhen Grad. Sch., Harbin Inst. of Technol., Shenzhen, China
Volume :
51
Issue :
9
fYear :
2015
fDate :
4 30 2015
Firstpage :
697
Lastpage :
699
Abstract :
Toeplitz matrix-vector product (TMVP) decomposition is one of the high-precision multiplication algorithms. A symmetric TMVP (STMVP) decomposition is presented and theoretical analysis shows that the space complexity of the proposed STMVP scheme is less compared with the traditional TMVP approach. Gaussian normal basis (GNB) multiplication based on the proposed architecture can be used to reduce the space complexity.
Keywords :
Toeplitz matrices; computational complexity; matrix decomposition; vectors; GNB multiplication; Gaussian normal basis multiplication; high-precision multiplication algorithms; space complexity reduction; symmetric TMVP decomposition; symmetric Toeplitz matrix-vector product decomposition;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el.2015.0014
Filename :
7095707
Link To Document :
بازگشت