DocumentCode :
457155
Title :
Independent component analysis based filter design for defect detection in low-contrast textured images
Author :
Tsai, Du-Ming ; Tseng, Yan-Hsin ; Chao, Shin-Min ; Yen, Chao-Hsuan
Author_Institution :
Dept. of Ind. Eng. & Manage., Yuan-Ze Univ.
Volume :
2
fYear :
0
fDate :
0-0 0
Firstpage :
231
Lastpage :
234
Abstract :
In this paper, we propose a convolution filtering scheme for detecting defects in low-contrast textured surface images and, especially, focus on the application for glass substrates in liquid crystal display (LCD) manufacturing. A defect embedded in a low-contrast surface image shows no distinct intensity from its surrounding region, and even worse, the sensed image may present uneven brightness on the surface. All these make the defect detection in low-contrast surface images extremely difficult. In this study, a constrained ICA (independent component analysis) model is proposed to design an optimal filter with the objective that the convolution filter will generate the most representative source intensity of the background surface without noise. The prior constraint incorporated in the ICA model confines the source values of all training image patches of a defect-free image within a small interval of control limits. In the inspection process, the same control parameter used in the constraint is also applied to set up the thresholds that make impulse responses of all pixels in faultless regions within the control limits, and those in defective regions outside the control limits. A stochastic evolutionary computation algorithm, particle swarm optimization (PSO), is applied to solve for the constrained ICA model. Experimental results have shown that the proposed method can effectively detect defects in textured LCD glass substrate images
Keywords :
convolution; electron device manufacture; filtering theory; image texture; independent component analysis; liquid crystal displays; particle swarm optimisation; convolution filtering; defect detection; glass substrates; independent component analysis; liquid crystal display manufacturing; low-contrast surface images; low-contrast textured images; optimal filter design; particle swarm optimization; stochastic evolutionary computation; Background noise; Brightness; Convolution; Filtering; Filters; Glass manufacturing; Independent component analysis; Liquid crystal displays; Pulp manufacturing; Surface texture;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2006. ICPR 2006. 18th International Conference on
Conference_Location :
Hong Kong
ISSN :
1051-4651
Print_ISBN :
0-7695-2521-0
Type :
conf
DOI :
10.1109/ICPR.2006.709
Filename :
1699189
Link To Document :
بازگشت