DocumentCode :
457197
Title :
Latent Layout Analysis for Discovering Objects in Images
Author :
Liu, David ; Chen, Datong ; Chen, Tsuhan
Author_Institution :
Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA
Volume :
2
fYear :
0
fDate :
0-0 0
Firstpage :
468
Lastpage :
471
Abstract :
Latent layout analysis (LLA) is a novel unsupervised learning technique to discover objects in unseen images using a set of un-annotated training images. LLA defines a generative model that associates latent aspects to local appearances. The dependency between aspects and position is captured by a spatial sensitive aspect model. This dependency distinguishes LLA from probabilistic latent semantic analysis (PLSA). The latent aspects together with the latent layout constitute a compact scene representation. We demonstrate that the proposed LLA significantly outperforms probabilistic latent semantic analysis in two tasks: object discovery (detection) and object localization
Keywords :
image representation; object detection; unsupervised learning; compact scene representation; latent layout analysis; object detection; object discovery; object localization; probabilistic latent semantic analysis; spatial sensitive aspect model; unannotated training images; unseen images; unsupervised learning; Clustering methods; Computer science; Detectors; Image analysis; Image edge detection; Internet; Labeling; Layout; Object detection; Unsupervised learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2006. ICPR 2006. 18th International Conference on
Conference_Location :
Hong Kong
ISSN :
1051-4651
Print_ISBN :
0-7695-2521-0
Type :
conf
DOI :
10.1109/ICPR.2006.743
Filename :
1699245
Link To Document :
بازگشت