DocumentCode :
457230
Title :
An LVQ-based Automotive Occupant Classification System
Author :
Kennedy, Karl R. ; Nathan, John F. ; Shridhar, M.
Author_Institution :
Lear Corp., Southfield, MI
Volume :
2
fYear :
0
fDate :
0-0 0
Firstpage :
662
Lastpage :
665
Abstract :
This paper presents a description of a system designed to classify a passenger in an automobile into one of three classes: a) adult, b) children (6 years and younger) and infants in child seats and c) empty seat. The authors examine the application of neural networks (BP, LVQ etc.) for this occupant classification system (OCS)
Keywords :
automotive engineering; image classification; learning (artificial intelligence); neural nets; vector quantisation; LVQ-based automotive occupant classification system; neural networks; passenger classification; Automobiles; Automotive engineering; Costs; Injuries; Pattern recognition; Pediatrics; Sensor arrays; Sensor systems; Testing; US Department of Transportation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2006. ICPR 2006. 18th International Conference on
Conference_Location :
Hong Kong
ISSN :
1051-4651
Print_ISBN :
0-7695-2521-0
Type :
conf
DOI :
10.1109/ICPR.2006.261
Filename :
1699292
Link To Document :
بازگشت