DocumentCode :
462737
Title :
3D Robust Adaptive Region Growing for segmenting [18F] fluoride ion PET images
Author :
Grenier, T. ; Revol-Muller, C. ; Costes, N. ; Janier, M. ; Gimenez, G.
Author_Institution :
Res. & Applications Center for Image & Signal Process., Villeurbanne
Volume :
5
fYear :
2006
fDate :
Oct. 29 2006-Nov. 1 2006
Firstpage :
2644
Lastpage :
2648
Abstract :
We propose a new robust adaptive region growing method (RoAd RG) based on two local parameters: the local mean value of the intensity function and the local mean value of the norm of the intensity gradient. This approach enables a better spread of the region growing inside the region of interest while avoiding the merge of outlier pixels. We tested our method on a synthesized noisy image, and demonstrated that RoAd RG gives better result than non adaptive or not fully adaptive methods. We applied positively our method to 3D [18F]fluoride ion PET images for segmenting bone structures, and showed its superiority compared to a non adaptive method.
Keywords :
adaptive signal processing; bone; fluorine; image segmentation; medical image processing; positron emission tomography; 3D RoAD RG; 18F; PET image segmentation; bone structure image segmentation; fluoride ion PET images; intensity function local mean value; intensity gradient norm local mean value; robust adaptive region growing; Biomedical imaging; Bones; Image segmentation; Nuclear and plasma sciences; Pixel; Positron emission tomography; Robustness; Roentgenium; Signal processing algorithms; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Nuclear Science Symposium Conference Record, 2006. IEEE
Conference_Location :
San Diego, CA
ISSN :
1095-7863
Print_ISBN :
1-4244-0560-2
Electronic_ISBN :
1095-7863
Type :
conf
DOI :
10.1109/NSSMIC.2006.356425
Filename :
4179582
Link To Document :
بازگشت