DocumentCode :
464050
Title :
Analysis of Max-Min Eigenvalue of Constrained Linear Combinations of Symmetric Matrices
Author :
Qu-Tang Cai ; Chun-Yi Peng ; Chang-Shui Zhang
Author_Institution :
Dept. of Autom., Tsinghua Univ., Beijing, China
Volume :
3
fYear :
2007
fDate :
15-20 April 2007
Abstract :
This paper studies the problem whether the smallest eigenvalue of constrained linear combinations of symmetric matrices can reach a desirable value, which actually extends the mathematical problem of finding a positive definite linear combination of symmetric matrices(PDLC), and provides a universal framework to maximize the minimal eigenvalue of linear combined symmetric matrices. For solving this problem, we cast an equivalent optimization task, and propose one general algorithm framework that is proved to be globally optimal and convergent. Both theoretical analysis and experiments under a typical constraint verify our algorithm´s validity and efficiency.
Keywords :
eigenvalues and eigenfunctions; matrix algebra; spectral analysis; constrained linear combinations; max-min eigenvalue; minimal eigenvalue; positive definite linear combination; spectral analysis; symmetric matrices; Algorithm design and analysis; Asia; Automation; Constraint theory; Eigenvalues and eigenfunctions; Optimization methods; Signal analysis; Signal processing algorithms; Spectral analysis; Symmetric matrices; Eigenvalues and eigenfunctions; Matrix multiplication; Optimization methods; Spectral analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on
Conference_Location :
Honolulu, HI
ISSN :
1520-6149
Print_ISBN :
1-4244-0727-3
Type :
conf
DOI :
10.1109/ICASSP.2007.367103
Filename :
4217976
Link To Document :
بازگشت