• DocumentCode
    46452
  • Title

    Segmentation of 3D Meshes Usingp-Spectral Clustering

  • Author

    Chahhou, Mohamed ; Moumoun, Lahcen ; El Far, Mohamed ; Gadi, Taoufiq

  • Author_Institution
    Fac. of Sci. Dhar Mahraz, Univ. Sidi Mohamed Ben Abdellah, Fes, Morocco
  • Volume
    36
  • Issue
    8
  • fYear
    2014
  • fDate
    Aug. 2014
  • Firstpage
    1687
  • Lastpage
    1693
  • Abstract
    In this paper, we propose a new approach to get the optimal segmentation of a 3D mesh as a human can perceive using the minima rule and spectral clustering. This method is fully unsupervised and provides a hierarchical segmentation via recursive cuts. We introduce a new concept of the adjacency matrix based on cognitive studies. We also introduce the use of one-spectral clustering which leads to the optimal Cheeger cut value.
  • Keywords
    computer graphics; matrix algebra; mesh generation; pattern clustering; 3D mesh segmentation; adjacency matrix; optimal Cheeger cut value; optimal segmentation; p-spectral clustering; rule clustering; spectral clustering; Benchmark testing; Clustering algorithms; Eigenvalues and eigenfunctions; Laplace equations; Silicon; Standards; Three-dimensional displays; 3D mesh; Cheeger cuts; minima rule; segmentation; spectral clustering;
  • fLanguage
    English
  • Journal_Title
    Pattern Analysis and Machine Intelligence, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0162-8828
  • Type

    jour

  • DOI
    10.1109/TPAMI.2013.2297314
  • Filename
    6701205