DocumentCode :
465096
Title :
Scaled Lifting Scheme and Generalized Reversible Integer Transform
Author :
Pei, Soo-Chang ; Ding, Jian-Jiun
Author_Institution :
Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei
fYear :
2007
fDate :
27-30 May 2007
Firstpage :
3203
Lastpage :
3206
Abstract :
In this paper, we generalize the lifting scheme and the triangular matrix scheme. For the existing lifting scheme and the triangular matrix scheme, the entries on the diagonal line must be 1 or 2k. In this paper, we find that this constraint can be relaxed and the lifting or the triangular matrix is still reversible. Thus, the constraint that det(A) = 2L is not required and we can convert a matrix into a reversible integer transform without pre-scaling even when det(A) ne 2L. Moreover, the proposed scaled schemes are also helpful for improving the accuracy and reducing the implementation complexity.
Keywords :
matrix decomposition; transforms; generalized reversible integer transform; scaled lifting scheme; triangular matrix scheme; Discrete transforms; Matrix converters; Matrix decomposition; Quantization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on
Conference_Location :
New Orleans, LA
Print_ISBN :
1-4244-0920-9
Electronic_ISBN :
1-4244-0921-7
Type :
conf
DOI :
10.1109/ISCAS.2007.378153
Filename :
4253360
Link To Document :
بازگشت