Title :
A Real-time Vision-based Vehicle Tracking and Traffic Surveillance
Author :
Liu Zhi-fang ; You Zhisheng
Author_Institution :
SiChuan Univ., SiChuan
fDate :
July 30 2007-Aug. 1 2007
Abstract :
A vision-based detecting and tracking vehicle in video streams is an important research in computer vision, and it plays an important role in ITS. The aim of motion detection is to get the changed region from the background image in video sequences, and it is also very important for targets classification and tracking motion objects. In this paper, a self-adaptive background subtraction method for vehicle segmentation was proposed. To indicate motion mask regions in a scene, instead of determining the threshold value manually, we use an adaptive thresholding method to automatically choose the threshold value. In order to accurately locate vehicle, we combined the projection of the difference image and the projection of the edge map from coarse to refine accurately locate vehicles. This proposed method could locate vehicle well. We formed an association graph between the regions from the previous frame and the regions from the current frame, so we modeled the vehicle tracking problem as a problem of finding maximal weight association graph. Very promising experimental results are provided using real-time video sequences, Experimental results demonstrate the validity of the approach in term of robustness, accuracy and time responses.
Keywords :
automated highways; computer vision; graph theory; image classification; image segmentation; image sequences; motion estimation; road traffic; road vehicles; tracking; video streaming; video surveillance; ITS; adaptive thresholding method; computer vision; image classification; image masking; maximal weight association graph; self-adaptive background subtraction method; traffic surveillance; vehicle motion detection; vehicle segmentation; vehicle tracking; video sequence; video stream; Computer vision; Image segmentation; Layout; Motion detection; Robustness; Streaming media; Surveillance; Target tracking; Vehicle detection; Video sequences;
Conference_Titel :
Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2007. SNPD 2007. Eighth ACIS International Conference on
Conference_Location :
Qingdao
Print_ISBN :
978-0-7695-2909-7
DOI :
10.1109/SNPD.2007.56