Title :
Any order approximate solution of the state equation for controlled nonlinear systems
Author :
Cao, Shao-zhong ; Ai, Dong-Mei ; Liu, He-ping ; Tu, Xu-Yan
Author_Institution :
Beijing Inst. of Graphic Commun., Beijing
Abstract :
Based on the solution of the linear state equation, the mean square envelope matrix can be obtained for a linear approximation to the controlled nonlinear system, and the transfer rule of mean square envelope matrix for the nonlinear system is discussed. By making of the Taylor expansion, the nonlinear state equation of controlled systems under ideal state is transformed to a set of ordinary differential equations with infinite series expression. Based on the solution of this set of linear state equation, the integral equation of the nonlinear state equation is also obtained by utilizing constant variation method. Finally, any order approximate solution of the nonlinear state equation is given by utilizing successive approximation method.
Keywords :
approximation theory; differential equations; integral equations; nonlinear control systems; Taylor expansion; controlled nonlinear system; infinite series expression; integral equation; linear approximation; mean square envelope matrix; nonlinear state equation; order approximate solution; ordinary differential equation; Communication system control; Control systems; Control theory; Differential equations; Integral equations; Linear approximation; Nonlinear control systems; Nonlinear equations; Nonlinear systems; Taylor series; Taylor expansion; Volterra’s integral equation; any order approximate solution; matrix of envelope; nonlinear state equation;
Conference_Titel :
Wavelet Analysis and Pattern Recognition, 2007. ICWAPR '07. International Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4244-1065-1
Electronic_ISBN :
978-1-4244-1066-8
DOI :
10.1109/ICWAPR.2007.4420633