DocumentCode :
469047
Title :
An adaptive mean shift tracking method using multiscale images
Author :
Jiang, Zhuo-lin ; Li, Shao-fa ; Gao, Dong-fa
Author_Institution :
South China Univ. of Technol., Guangzhou
Volume :
3
fYear :
2007
fDate :
2-4 Nov. 2007
Firstpage :
1060
Lastpage :
1066
Abstract :
An adaptive mean shift tracking method for object tracking using multiscale images is presented in this paper. A bandwidth matrix and a Gaussian kernel are used to extend the definition of target model. The method can exactly estimate the position of the tracked object using multiscale images from Gaussian pyramid. The tracking method determines the parameters of kernel bandwidth by maximizing the lower bound of a log-likelihood function, which is derived from a kernel density estimate with the bandwidth matrix and the modified weight function. The experimental results show that it can averagely converge in 2.55 iterations per frame.
Keywords :
Gaussian processes; image sequences; matrix algebra; maximum likelihood estimation; object detection; Gaussian kernel; adaptive mean shift tracking method; bandwidth matrix; image sequences; log-likelihood function; multiscale image; object tracking; Bandwidth; Clustering algorithms; Computer science; Image analysis; Kernel; Notice of Violation; Pattern analysis; Pattern recognition; Target tracking; Wavelet analysis; Gaussian pyramid; Mean shift; automatic bandwidth selection; multiscale; object tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Wavelet Analysis and Pattern Recognition, 2007. ICWAPR '07. International Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4244-1065-1
Electronic_ISBN :
978-1-4244-1066-8
Type :
conf
DOI :
10.1109/ICWAPR.2007.4421589
Filename :
4421589
Link To Document :
بازگشت