DocumentCode :
47108
Title :
Minimal-Memory, Noncatastrophic, Polynomial-Depth Quantum Convolutional Encoders
Author :
Houshmand, Monireh ; Hosseini-Khayat, Saied ; Wilde, Mark M.
Author_Institution :
Dept. of Electr. Eng., Ferdowsi Univ. of Mashhad, Mashhad, Iran
Volume :
59
Issue :
2
fYear :
2013
fDate :
Feb. 2013
Firstpage :
1198
Lastpage :
1210
Abstract :
Quantum convolutional coding is a technique for encoding a stream of quantum information before transmitting it over a noisy quantum channel. Two important goals in the design of quantum convolutional encoders are to minimize the memory required by them and to avoid the catastrophic propagation of errors. In a previous paper, we determined minimal-memory, noncatastrophic, polynomial-depth encoders for a few exemplary quantum convolutional codes. In this paper, we elucidate a general technique for finding an encoder of an arbitrary quantum convolutional code such that the encoder possesses these desirable properties. We also provide an elementary proof that these encoders are nonrecursive. Finally, we apply our technique to many quantum convolutional codes from the literature.
Keywords :
catastrophe theory; convolutional codes; polynomials; catastrophic propagation; elementary proof; minimal-memory encoders; noisy quantum channel; noncatastrophic encoders; polynomial-depth quantum convolutional encoders; quantum convolutional codes; quantum convolutional coding; quantum information; Convolutional codes; Decoding; Encoding; Generators; Ink; Memory management; Quantum entanglement; Catastrophicity; memory commutativity matrix; minimal memory; quantum convolutional codes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2012.2220520
Filename :
6311474
Link To Document :
بازگشت